

Welcome to OncodriveFML’s documentation!

Contents:

OncodriveFML

	OncodriveFML

	How it works
	The command line interface

	The files

	Workflow

	Files
	File formats

	Configuration
	Genome

	Signature

	Score

	Statistic

	Settings

	Logging

	Analysis
	Observed

	Simulated

	Signature
	Reasoning behind the correction

	Output
	Naming

	The .tsv file

	The plots

	Behind the scenes
	Command line interface

	Pickle files

	BgData

	Caveats

Indices and tables

	Index

	Module Index

	Search Page

OncodriveFML

Distinguishing the driver mutations from somatic mutations in a tumor genome is one of the major challenges of cancer research.
This challenge is more acute and far from solved for non-coding mutations.
OncodriveFML is a method designed to analyze the pattern of somatic mutations across tumors in both coding and non-coding genomic regions to identify signals of positive selection, and therefore, their involvement in tumorigenesis.
We described the method and illustrated its usefulness to identify protein coding genes, promoters, untranslated regions, intronic splice regions, and lncRNAs-containing driver mutations in several malignancies in
Mularoni et al., Genome Biology 2016 [http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0994-0].

To use OncodriveFML check its website [http://bg.upf.edu/oncodrivefml] or download the source code
from our git repository [https://bitbucket.org/bbglab/oncodrivefml.git].

OncodriveFML is a project developed by the Barcelona Biomedical Genomics Lab [http://bbglab.irbbarcelona.org].

We are a research group integrated in
the Institute for Research Biomedicine [https://www.irbbarcelona.org] in Barcelona,
which is part of the Barcelona Institute of Science and Technology [http://bist.eu].
Our lab is located at the Barcelona Science Park [http://www.pcb.ub.edu].

Our main research interest [http://bbglab.irbbarcelona.org/web/index.php/research/] is
the computational study of cancer at the genomic level.

Check the README file
to find infomation about licensing
and installation.

Run the example for a quick
check of the installation.

How it works

This section will try to give an overview of
how OncodriveFML carries on the analysis.

The command line interface

By typing oncodrivefml -h you will have a brief
description of how to use OncodriveFML:

	Options:

	
	-i, --input MUTATIONS_FILE

	Variants file [required]
(see format)

	-e, --elements ELEMENTS_FILE

	Genomic elements to analyse [required]
(see format)

	-t, --type

	Type of genomic elements file [required]:

	coding: the files corresponds to coding regions

	noncoding: the file corresponds to noncoding regions

See details about the command line interface
to find more information about this option.

	-s, --sequencing

	Type of sequencing [required]:

	wgs: whole genome sequencing

	wes: whole exome sequencing

	targeted: targeted sequencing

See details about the command line interface
to find more information about this option.

	-o, --output OUTPUT_FOLDER

	Output folder. Default to regions file name
without extensions.

	-c, --configuration CONFIG_FILE

	Configuration file. Default to
‘oncodrivefml_v2.conf’ in the current folder if
exists or to ~/.bbglab/oncodrivefml_v2.conf if
not.

	--samples-blacklist SAMPLES_BLACKLIST

	Remove these samples when loading the input
file.

	--no-indels

	Discard indels in your analysis

	--generate-pickle

	Run OncodriveFML to generate pickle files
that could speed up future executions and
exit.

	--debug

	Show more progress details

	--version

	Show the version and exit.

	-h, --help

	Show this message and exit.

If you prefer to call OncodriveFML from a Python script,
you can download the source code, install it and call the
main() function.

Note

You might have notice that the main()
function accepts less parameters than the command line
interface. This is because the command line interface
modifies some parameters in the configuration, while
calling directly the Python code does not.
Check what is modified by the command line interface.

This implies that you should adapt the
configuration file
to your needs.

The files

Input files

OncodriveFML makes use of three files:

	Variants

	Also named as input.
This file contains the observed mutations for the analysis.

	Regions

	File containing the regions for the analysis.
Only mutations that fall in these regions are analysed
and only the genomic positions defined in this file are used
for the simulation.

You can define your own regions file
based on your criteria. You can check
an example of a regions file
downloading our example [https://bitbucket.org/bbglab/oncodrivefml/downloads/].

Warning

It is not recommended to mix coding and
non-coding regions in your regions file.
In fact this will likely produce artifacts
in the results as coding and non-coding regions
of the genome have a very different functional
impact scores. A good set of genomic regions should
include elements that share biological functions
(e.g. CDS, UTRs, promoters, enhancers, etc.).

Check the formats for
the input files.

	Configuration

	The configuration file is also a key part of the run,
and understanding how to adapt it to your needs is important.
Check this section
to find more details about it.

Output files

Find information about the output output files section.

Workflow

	The first thing that is done by OncodriveFML is to load
the configuration file and to create the output folder if it does not exist.

Note

If you have not provided any output folder, OncodriveFML
will create one in the current directory with the same name
as the elements file (without extension).

If the output folder exits, OncodriveFML checks whether a
file with the expected output name exits and, if so, it does not
run.

	The regions file is loaded, and a tree with the intervals is created.
This tree is used to find which mutations fall in the regions being
analysed.

	Loads the mutations file and keeps only the ones that fall into the regions
being analysed.

	Computes the signature (see the signature section).

	Analyses each region separately (only the ones that have mutations).
In each region the analysis is as follow:

	Computes the score of each of the observed mutations.

	Simulates the same number of mutations in the segments of the region under analysis.
Save the scores of each of the simulated mutations.
The simulation is done several times.

	Applies a predefined function to the observed scores and to each of the simulated
groups of scores.
Counts how many times the simulated value is higher than, or equal to, the observed.

	From these counts, computes a P-value by dividing the counts by the number
of simulations performed.

You can find more details in the analysis section.

	Joins the results and performs a multiple test correction.
The multiple test correction is only done for regions with
mutations from at least two samples.

	Creates the output files.

	Checks that the output file does not contain
missing or repeated genomic regions.

Files

File formats

Note

All the files can be compressed using GZIP (extension “.gz”), BZIP2 (extension “.bz2”) or LZMA (extension “.xz”)

Input file format

The variants file is a text file with, at least, 5 columns separated by a tab character (the header is required, but the order of the columns can change):

	Column CHROMOSOME: Chromosome. A number between 1 and 22 or the letter X or Y (upper case)

	Column POSITION: Mutation position. A positive integer.

	Column REF: Reference allele. A single letter: A, C, G or T (upper case)

	Column ALT: Alternate allele. A single letter: A, C, G or T (upper case)

	Column SAMPLE: Sample identifier. Any alphanumeric string.

	Column CANCER_TYPE: Cancer type. Any alphanumeric string. Optional.

	Column SIGNATURE: User defined signature categories. Any alphanumeric string. Optional.

Regions file format

The regions file is a text file with, at least, 4 columns separated by a tab character
(the column order must be preserved):

	Column 1 [CHROMOSOME]: Chromosome. A number between 1 and 22 or the letter X or Y (upper case)

	Column 2 [START]: Start position. A positive integer.

	Column 3 [STOP]: End position. A positive integer.

	Column 4 [STRAND]: Strand: + for positive, - for negative, . for unknown.

	Column 5 [ELEMENT]: Element identifier.

	Column 6 [SEGMENT]: Segment identifier. Optional column.

	Column 7 [SYMBOL]: Symbol, a different identifier for the element that will also be printed in the output file. Optional column.

Output file format

OncodriveFML generates a tabulated file with the results with the
extension “.tsv”.

Check the output section to find a detailed description
regarding the output.

Configuration

The method behaviour can be modified through a configuration file.

Warning

Using the command line interface overwrites some setting in the configuration file.
Check how the command line interface changes the configuration in the command line interface
section.

Check the oncodrivefml_v2.conf.template that is included in the package
to find an example of the configuration file.

This section will explain each of the parameters in the configuration file:

Genome

[genome]
Build of the reference genome
Currently supported: hg19, hg38 and hg18
build = 'hg19'

The genome section makes reference to the reference genome
used by OncodriveFML.

The reference genome has been obtained from http://hgdownload.cse.ucsc.edu/downloads.html.

Currently, only HG19 is fully supported. Use build = 'hg19' to use it.

There is a partial support for HG18 and HG38.
The support is only partial because the values for the position and alterations
of the stops in the these genomes have not been computed yet. If you want to
run OncodriveFML with any of these genomes, make sure you do not use
the stop method for the indels (ref).

Warning

If you decide to use a reference genome other than HG19, make sure that the
scores file you use is compatible with it.

Signature

[signature]
"full" : Use a 192 matrix with all the possible signatures
method = 'full'

Choose the classifier (categorical value for the signature:

Choose the classifier (categorical value for the signature:
The classifier is a column in the dataset and must be one of these:
classifier = 'SIGNATURE'
classifier = 'SAMPLE'
classifier = 'CANCER_TYPE'
if the column is missing, all mutations contribute to the signature

Include/exclude MNP mutations in the signature computation
include_mnp = True

Choose if the signature must be computed using the whole cohort or
only the elements that fall into the regions you are analysing:
only_mapped_mutations = False

The frequency of trinucleotides can be normalized by the frequency of sites
None: do not correct (comment the option)
normalize_by_sites = ''

The signature represents the probability of a certain nucleotide
to mutate taking into account its context 1.

You can choose one of the following options for the signature:

	To not use any signature, which is equivalent to assume that all changes
have equal probability to happen: method = 'none'.
This approach is recommended for small datasets.

	OncodriveFML can also compute the signatures using the provided dataset.
This option contains a set of parameters that you can use to decide how
this computation is done.

	Select one of the methods to compute the signatures from the dataset:
method = 'full' to count each mutation once and
method = 'complement' to collapse complementary mutations.

Note

The option method = 'bysample' is equivalent to method = 'complement'
but forces the classifier (see below) to be SAMPLE.

	The classifier parameter indicates which column from the mutations file
is used to group the mutations when computing the signatures. E.g. grouping
by SAMPLE generates one signature for each sample.
Only SAMPLE, CANCER_TYPE and SIGNATURE columns can be used.

	You can decide to use only SNP (include_mnp = False)
or also use MNP mutations (include_mnp = True).

	You can choose between using only the mutations that are mapped
to the regions under analysis (only_mapped_mutations = True)
or use all the mutations (SNPs and optionally MNPs) in the dataset.

	The signatures can be corrected by the frequencies of sites.
If you do not specify anything, OncodriveFML will not correct the signatures.
Use normalize_by_sites = 'whole_genome' or 'wgs' to correct
by the frequencies in the whole genome.
Use normalize_by_sites = 'whole_exome' or 'wes' or 'wxs' to correct
by the frequencies in the exome.
If you have specified only_mapped_mutations = True, then the correction will
be done by the frequencies of trinuceotides found in the regions under analysis,
as long as you indicate one of the above mentioned values.

Note

The frequencies have been computed for genome build HG19.
If you want to check the values, use the bgdata package.

	The recommended approach is to use your own signatures.
OncodriveFML has the option method = 'file' to
load precomputed signatures from a file.
This option requires a few additional parameters:

	path: path to the file containing the signature

	colum_ref: column that contains the reference triplet

	column_alt: column that contains the alternate triplet

	column_probability: column that contains the probability

Warning

Probabilities must sum to one.

Score

The score section is used to know
which scores are going to be used.

[score]
Path to score file
file = "%(bgdata://genomicscores/caddpack/1.0)"
Format of the file
format = 'pack'
Column that has the chromosome
chr = 0
If the chromosome has a prefix like 'chr'. Example: chrX chr1 ...
chr_prefix = ''
Column that has the position
pos = 1
Column that has the reference allele
ref = 2
Column that has the alternative allele
alt = 3
Column that has the score value
score = 5

Minimum number of stops per element to infer a for the stops using the mean of all scores
minimum_number_of_stops = 3
Function to infer the value of the stops in an element using the mean (x is the mean value of the scores)
mean_to_stop_function = '8.9168668946147314*np.exp(0.082688007694096191*x)'

The scores should be a file that for a given position, in a given chromosome,
gives a value to every possible alteration.

Some of the parameters in this section are optional,
while others are mandatory.

	file is a string and represents the path to the scores file.

	format = 'tabix' indicates that the file is a
tab separated file compressed with bgzip. This means that a .tbi index file should be present in the same location.
The other option currently supported is format = 'pack' which is a
binary format we have implemented to reduce the file size.
Thus, if you want to use your own file, use the tabix [http://www.htslib.org] format.

	chr column in the file where the chromosome is indicated.

	chr_prefix: when querying the tabix file for a specif chromosome
OncodriveFML only uses the number of the chromosome or ‘X’ or ‘Y’. If the
tabix file requires a prefix before the chromosome, use this option. For instance, if the chromosomes in the
tabix file are labeled as chr1, chr2, .., chrY, set this option to: chr_prefix = 'chr'.
If this is not the case, use an empty string: chr_prefix = ''.

	pos column that indicates the position of the scored alteration in the chromosome.

	ref column that contains the reference allele. It is optional.

	alt column that contains the alternate allele. It is optional.
If is not specified, it is assumed that the 3 possible changes have the same score.

	score column that contains the score.

	element column that contains the element identifier. It is optional.
If it is provided and the value does not match with the one from the regions,
these scores are discarded.

OncodriveFML uses two additional parameters,
which are related only to the stop method
for computing the indels.

	When analysing a certain gene, OncodriveFML might need
to score an indel according to the value of the stops in the gene.
It might happen that the number of stops is 0
or is below a certain threshold.
In such cases, OncodriveFML uses the function specified
in this parameter to assign a score from the mean value
of all the stops in the gene.

Download the IPython notebook that
has been created with the functions computed for
CADD1.0 and CADD1.3, or see it.

	When analysing a certain gene, OncodriveFML gets all the scores
associated with the mutations that produce a stop in that gene.
minimum_number_of_stops indicates the minimum number of stops
that a gene is required to have in order to avoid using the function above.

Statistic

The statistic section is related to the configuration
of the analysis

[statistic]
Mathematical method to use to compare observed and simulated values
method = 'amean'

Do not use/use MNP mutations in the analysis
discard_mnp = False

Minimum sampling
sampling = 100000
Maximum sampling
sampling_max = 1000000
Sampling chunk (in millions)
sampling_chunk = 100
Minimum number of observed (if not reached, keeps computing)
sampling_min_obs = 10

There a different parameters you can configure:

	method represents the type of operation that is applied to
observed and simulated scores before comparing them.
The arithmetic mean (method = 'amean') and
the geometric mean (method = 'gmean') are supported.
The recommended one is the arithmetic mean.

	In some cases, you might be interested in performing the
analysis per sample. This means that all the mutations that come
from the same sample are reduced to a single score. This score
can be the maximum (per_sample_analysis = 'max'),
the arithmetic mean (per_sample_analysis = 'amean') or
the geometric mean (per_sample_analysis = 'gmean') of all the mutation’s
scores that come from the sample sample.
Comment this option if you are not interested in this type of analysis.

	MNP mutations can optionally be included in the analysis.
Use discard_mnp = False to include them
and discard_mnp = True to discard them.

OncodriveFML includes a few more parameters
that are related to how many simulations are performed.

	sampling represents the minimum number of
simulations to be performed.

	sampling_max represents the maximum number
of simulations to be performed.

	sampling_chunk represents the maximum size (in millions)
that a single process can handle. This value is
used to keep the memory usage within certain limits.

Note

With a value of 100, each process takes less than 4 GB
of RAM. We have not considered the memory taken by
the main process.

	sampling_min_obs represents the minimum
number of observations 2. When it is reached,
no more simulations are performed.

Indels

The indels subsection of statistic contains
the configuration for the analysis of indels.

[[indels]]
Include/exclude indels from your analysis
include = True

Method used to simulate indels
Treat them as a set of substitutions and take the maximum
method = 'max'

Number of consecutive times the indel appears to consider it falls in a repetitive region
Looking from the indel position and in the direction of the strand
max_consecutive = 7

Indels simulated as substitutions take into account signature or not
simulate_with_signature = True

Use exomic probabilities of frameshift indels in the dataset for the simulation
gene_exomic_frameshift_ratio = False

Function applied to the scores of the stops in the gene to compute the observed score
Arithmetic mean
stops_function = 'mean'

OncodriveFML accepts various parameters related to the indels:

	The main option is include, which indicates
whether to include indels in the anlysis
or not.
Use include = True to include indels
and include = False to exclude them.

	OncodriveFML can simulate indels in two ways.
method = 'max' simulates indels as a set of
substitutions. method = 'stop' simulates
indels as stops. This option is recommended
for simulating indels in coding regions.
Check the analysis of indels
section to find more details.

	OncodriveFML discards indels that fall in
repetitive regions. OncodriveFML considers that
an indel is in a repetitive region when the
same sequence of the indel appears consecutively
in a genomic element a certain number of times
(or even more) following the direction of the strand.
The maximum number of consecutve repetitions can be
set with the max_consecutive option.
OncodriveFML will not discard any indel
due to repetitive regions if you set
max_consecutive = 0.

	Indels that are simulated as substitutions 3
can be simulated assigning to all the positions of the genomic element
under analysis the same probability to be mutated. Alternatively the
probability of each position to be mutated can depend on the mutational
signature. For instance if the signature is represented by the cancer type,
indels coming from a breast cancer dataset will be simulated
with the signature of that cancer type.
Indels do not contribute to the signature of a cancer type, therefore through
this option you can decide whether indels should be simulated following
the mutational signature or not.
Use simulate_with_signature = True to use the signature
or simulate_with_signature = False to simulate indels with
the same probabilities.

	gene_exomic_frameshift_ratio is a flag that indicates OncodriveFML
which mutations influence the probabilities
for frameshift indels and substitutions.
When gene_exomic_frameshift_ratio = False the probabilities are taken
from the mapped mutations discarding those whose length is
multiple of 3. Note that in order to work properly,
this option should be set when the regions file corresponds to
coding regions.
If gene_exomic_frameshift_ratio = True, the probabilities
are taken from the observed mutations rate in each region.
This option is harmless when method = 'max'.

	The observed score of an indel that is computed with the
method = 'stop' option is related to the score of the stops
in its gene. You can decide how this relation is by choosing
a function that is applied to all stops scores in the gene. E.g.
stops_function = 'mean' associates the indel to a value that is
equal to the mean of all stop scores in the gene.
The options you can choose are:
- 'mean' for arithmetic mean
- 'median' for the median
- 'random' for a random value between the maximum and the minimum
- 'random_choice' for choosing a random value between all the possible ones

Settings

To configure the system where the analysis is performed
OncodriveFML includes the setting section:

[settings]
Number of cores to use in the analysis
Comment this option to use all avaliable cores
cores = 6

Use the cores option to indicate how many cores to
use. You can comment this option in order to use
all the available cores.

Note

OncodriveFML works on shared memory systems
using the multiprocessing [https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing] module.

Logging

The logging section is used to configure the
logging system of OncodriveFML.

Configuration for the logging system
[logging]
version = 1
disable_existing_loggers = False
Configuration for the handlers
[[handlers]]
Log to stdout
[[[console]]]
class = 'logging.StreamHandler'
formatter = 'bgformat'
level = 'INFO'
stream = 'ext://sys.stdout'
log to a file
[[[file]]]
class = 'logging.FileHandler'
formatter = 'bgformat'
filename = 'log.txt'
mode = 'w'
Configuration for the formatters
[[formatters]]
[[[bgformat]]]
format ='%(asctime)s %(levelname)s: %(message)s'
datefmt ='%H:%M:%S'
Configuration for the loggers
[[loggers]]
OncodriveFML logger
[[[oncodrivefml]]]
handlers = ['console', 'file']
level = 'DEBUG'
propagate = 0

OncodriveFML uses the logging [https://docs.python.org/2/library/logging.html#module-logging] module.
In particular it loads the configuration file into a dictionary
and passes this section to dictConfig() [https://docs.python.org/2/library/logging.config.html#logging.config.dictConfig].

You can change this section to other compatible configurations
to fit your needs.

All the logs are done using a logger named oncodrivefml.
The logging system can be configured through the logging section of the
configuration file.

Warning

If OncodriveFML detects that the run has already been calculated,
the warning informing the user uses the root logger.

OncodriveFML does override the configuration in two ways:

	If the debug flag is set, the console logger level is set to DEBUG.
Otherwise, it is set to INFO.

	If one of the handlers is named file, its filename is set to
<mutations file name>__log.txt and saved in the same folder as
the OncodriveFML output.

	1

	Previous and posterior nucleotides

	2

	An observation is counted when a simulated value,
after applying the function in method to the simulated scores,
is higher than the result of applying the same function to the
observed scores.

	3

	All indels are simulated as substitutions when
method = 'max'. Indels that are in-frame
are also simulated as substitutions when method = 'stop'.

Analysis

This sections explains how OncodriveFML
compute the scores for the observed mutations
and how mutations are simulated.

The analysis is done for each element
independently.
The same number of observed mutations
is simulated within the element,
taking only the positions
indicated in the regions file.

Observed

Single Nucleotide Polymorphism (SNP)

SNP mutations are the simplest to compute.
To score them, OncodriveFML get the score
for the corresponding alteration in the position
of the mutation.

If there is not a score for that particular change,
the mutation is ignored 1.

Multi Nucleotide Polymorphism (MNP)

MNP mutations are considered as set of SNPs.
The observed value is the maximum value of all
the changes produced by the MNP.

MNPs are ignored 1
when none of the changes it introduces
has a score.

Insertion or deletion (INDEL)

Indels are scored in two different ways:
as stops or as substitutions.

	As stops

	Indels are scored as stops in the analysis of coding regions
and if their length is not a multiple of 3.
In coding regions, a frameshift indel might cause,
somewhere in the gene, a stop.
This is why OncodriveFML uses this approach.
The way OncodriveFML
scores this type of indels is taking all the stop scores 2 in the gene
under analysis and applying a user defined function to them.
In some cases, OncodriveFML can infer a value for the scores of the stops using
the mean score of all mutations in the gene. See the configuration of indel
section for further information.

	As substitutions

	Indels that fall in non-coding regions or
in-frame indels in coding regions are considered as
a set of substitutions.
Similarly to MNP mutations, the changes produced by
the indel are computed as a set of SNPs mutation and OncodriveFML
assigns the indel the maximum score of those changes.
In an insertion, the reference genome is compared with the
indel in the direction of the strand.
In a deletion, the reference genome is compared with itself
but shifted a number of position equal to the length of
the indel in the direction of the stand.
Only the changes produced in the length of the indel are considered.

Note

If none of the changes produced by the indel has
a score, the indel is ignored 1.

Indels with a length higher than 20 nucleotides
are ignored 1.

Simulated

The same number of mutations that are observed
and have a score are simulated.

To perform the simulation two arrays are computed:

	One contains the scores of all possible single nucleotide substitutions
that can occur within the segments of the element under analysis.
Additionally, this array also contains the values of the stops in this region.

	The other array contains the probabilities of each of those changes.

Using the probability array, a random sampling of the scores array is
done to obtain the simulated scores.

Probabilities

The probability array is computed taking into account different parameters.

The probability associated to any of the stop scores is:

[image: p = \frac{1}{n_{stops}} * p_{frameshift indel}]

where [image: p_{frameshift indel} + p_{subs} = 1], and [image: n_{stops}] is the number of
stop scores for that gene.

[image: p_{frameshift indel}] represents the probability of simulating a frameshift indel in that gene,
and [image: p_{subs}] represents the probability of simulating a substitution.

	If the analysis type is selected to be max (see configuration)
[image: p_{frameshift indel} = 0].

	If the analysis type is stop (see configuration),
OncodriveFML assumes you are analysing coding regions.
For coding regions, the probability of simulating a frameshift indel
depends on amonwhether you are analysing using the whole cohort percentages
or only the mutations observed in each gene.

	When using exomic frameshift probabilities
OncodriveFML computes how
many indels you observe, and how many of those fall into the region
you are analysing (which should be coding). Among the mapped indels
OncodriveFML distinguishes between frameshift and in-frame indels.
The ratio of frameshift indels against the total amount of mutations
is used to compute [image: p_{frameshift indel}].

	When using the probabilities taken from the gene:

[image: p_{frameshift indel} = \frac{n_{observed frameshift indels}}{n_{observed mutations}}]

where [image: n_{observed frameshift indels}] is the number of observed frameshift indels
and [image: n_{observed mutations}] is the number of observed mutations.

The probabilities associated with the substitutions are:

[image: p = p_{subs} * \frac{\sum_s {p_s*f_s}}{n_{substitutions}}]

where s represents each of the signatures found in the gene in the observed mutations,
[image: p_s] is the probability of a particular mutation to occur given the s signature,
[image: n_{substitutions}] is the total number of substitutions,
and [image: f_s] is the relative frequency of a particular signature s in the gene.

However, if you are not using any signature (see singature configuration):

[image: p = p_{subs} / {n_{substitutions}}]

where [image: {n_{substitutions}}] is the amount of substitutions in the gene.

	1(1,2,3,4)

	When an observed mutation is ignored
it means that it cannot be assigned a score, and thus
it does not contribute to the observed scores and
in the simulation the number of mutations simulated is
one less for that region.

	2

	The package BgData includes the precomputed
position and alteration of the stops for the HG19 genome build.
OncodriveFML makes use of it.

Signature

The signature is an array that assigns a probability to
a single nucleotide mutation taking into account its context 1.
It represents the chance of a certain mutation to occur within a context.

Check the different options for the signature in the
configuration file.
In short, you can choose between not using any signature, using your own signature
or computing the signature from the mutations file.
Additionally, signatures can be grouped into different categories
(such as the sample).

The signature array is computed by counting, for each Single Nucleotide Polymorphism,
the reference and alternated triplets.

Note

OncodriveFML also uses the MNP mutations to compute the
signature, by treating them as a set of separate SNPs.
You can enable or disable this behaviour with the include_mnp option in the
configuration file.

The counts are then divided by the total number of counts
to generate a frequency of triplets. For a mutation [image: i]
the frequency is
[image: f_i = \frac{m_i}{M}] where [image: M = \sum_j m_j], and
[image: m_i] represent the number of times that the mutation
[image: i] with its context 1 has been observed.

Optionally, the signature can be corrected taking into
account the frequency of trinucleotides in the
reference genome.
OncodriveFML introduces this feature because the
distribution of triplets is not expected to be constant.
When using the command line interface, OncodriveFML
does this correction automatically according to
the value passed in the flag --sequencing
(you can list all the options using the help).

Reasoning behind the correction

Let’s first take the conditional probability of a mutation (with contectx 1)
to occur given the number of those triplets in the region:
[image: p_i = p(m = i | T_i) = \frac{m_i}{T_i}].

Then, the normalized frequency of the mutation [image: i] is:
[image: \overline{f_i} = \frac{m_i/T_i}{\sum_j m_j/T_j}].

The results can be adapted in case our inputs are not absolute values but relative frequencies.
[image: f_i] is the frequency of mutations and [image: t_i] the frequency of nucleotides:

[image: f_i = \frac{m_i}{\sum_j m_j}; t_i = \frac{T_i}{\sum_j T_j} \simeq \frac{T_i}{N}]

([image: N] is the number of nucleotides, [image: \sum_j T_j = N - 2 \cdot s], where [image: s] is the number of segments)

Then:

[image: \overline{f_i} = \frac{f_i/t_i}{\sum_j f_j/t_j}]

Proof:

[image: \frac{f_i/t_i}{\sum_j f_j/t_j} = \frac{\frac{\frac{m_i}{\sum_j m_j}}{\frac{T_i}{\sum_j T_j}}}{\sum_k \frac{\frac{m_k}{\sum_j m_j}}{\frac{T_k}{\sum_j T_j}}} = \frac{\frac{m_i}{T_i} \cdot \frac{\sum_j T_j}{\sum_j m_j}}{\sum_k (\frac{m_k}{T_k} \cdot \frac{\sum_j T_j}{\sum_j m_j})} = \frac{\frac{m_i}{T_i} \cdot \frac{\sum_j T_j}{\sum_j m_j}}{\frac{\sum_j T_j}{\sum_j m_j} \cdot \sum_k \frac{m_k}{T_k}} = \frac{m_i / T_i}{\sum_k m_k/T_k}]

	1(1,2,3)

	The context is formed by the previous and posterior nucleotides.

Output

OncodriveFML generates 3 output files:

	A .tsv with the analysis results

	A .png image with the most significant genes labeled.

	A .html interactive plot which can be used to search for specific genes.

Naming

All the 3 files generated by OncodriveFML have the same name.
They only differ in the extension.
The name given to the files is the same as the name of the
mutations file followed by -oncodrivefml and the extension.

The .tsv file

This tabulated file is the most important
(as the others are just plots using the data in this one)
and contains the results of the analysis.

In the file, the following columns can be found:

	index

	Gene ID from Ensembl

	MUTS

	number of mutations found in the dataset for that gene

	MUTS_RECURRENCE

	number of mutations that do not occur in the same position

	SAMPLES

	number of mutated samples in the gene

	P_VALUE

	times that the observed value is higher than or equal to the
expected value, divided by the number of randomizations

	Q_VALUE

	pvalue corrected using the Benjamini/Hochberg correction
(for samples with at least 2 samples_mut)

	P_VALUE_NEG

	times that the observed value is lower than or equal to the
expected value, divided by the number of randomizations

	Q_VALUE_NEG

	pvalue_neg corrected using the Benjamini/Hochberg correction
(for samples with at least 2 samples_mut)

	SNP

	number of mutations that are Single Nucleotide Polymorphisms

	MNP

	number of mutations that are Multi Nucleotide Polymorphisms
(two or more)

	INDELS

	number of mutations that are insertions or deletions

	SYMBOL

	HGNC Symbol

The plots

Both plots (.png and .html) represent the same.
They are similar to Q-Q plots [https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot]
where in the Y axis the [image: -log10] of the computed P-values are represented (sorted)
and in the X axis the [image: -log10] of the expected P-values are reported (sorted).

The expected P-values represent the null distribution: [image: -log10(i/N)]
where [image: i \in [1, N]] and N represents the number of computed
P-values.

Note

The P-values of OncodriveFML are always > 0, even when
all the simulated functional impact scores are lower
than the observed functional impact score. In this case,
a pseudocount is added.

The genomic elements that have a lighter color in the plot
are the ones for which the number of mutated sample
does not reach the minimum required to perform the
multiple test correction.

All the genomic regions above the red line in the plot
represent those with a Q-value below 0.1.
The ones between the green line and the red line
are the ones with a Q-value between 0.25 and 0.1.

Behind the scenes

This section will point out some parts which
might be interesting if you are running
OncodriveFML yourself.

Command line interface

The command line interface of OncodriveFML overwrites some of the
parameters in the configuration file.

Warning

This overwrite is performed regardless the parameter is set or not in the configuration file.

The following table shows the
modifications introduced
in the indels configuration parameters
by the --type flag:

Effects of –type

	Value

	Effect in configurtion of indels

	coding

	method = 'stop'

	noncoding

	method = 'max'

The flag --no-indels also affects the
indels configuration parameters.
Particularly, it has effect on the include option.
The use of this flag discards the analysis of indels
by setting include = False, while not using it
includes indels (include = True).

The table below shows the effects of the
--sequencing flag in the signature configuration:

Effects of –sequencing

	Value

	Effect in signature

	wgs

	normalize_by_sites = 'whole_genome'

	wes

	normalize_by_sites = 'whole_exome'

	targeted

	normalize_by_sites = None

Finally, the use of the --debug flag
sets the level of the console handler in the logging section
to 'DEBUG'.

Pickle files

OncodriveFML can create and use intermediate files
to speed up computations that use the same files.

The regions file is loaded using the BgParsers library,
so the cache of that file is out of the scope of
OncodriveFML. In short, the file will be cached
the first time you use it and rebuild
if you change its name or content.

There are 2 other items for which OncodriveFML
can create or use a cache-like files to speed up future executions.
Those files are saved in (or loaded from) the same folder
as the mutations file.
However, the systems is not as sophisticated as the BgParsers and may
lead to few issues.
To generate these cache-like files
you need to run OncodriveFML with the
--generate-pickle option
(you can list all the options using the help).

Warning

Using this option can speed up computations as some steps
can be replaced by a single file read. However, changes
in the input files are not noticed by these pickle files
unless you rename them.
Thus we recommend its use only to advanced users that understand
the process.

Mutations

One of the pickle files that can be created contains
a dictionary with the mutations mapped to the genomic
elements being analysed and some other useful metadata
(such as the number of indels or SNP mutations).
This file, named <mutations file>+__mapping__+<elements file>,
is helpful to skip the steps of loading and mapping
mutations.
If this file is in the same location as the mutations file, OncodriveFML loads it
as long as it does not receive any file with blacklisted samples.

Signature

The other pickle file created is the
signature pickle.
It is only created for signature methods: full and complement
Its name is: <mutations file>+_signature_+<method>+_+<classifier>.
See signature configuration for more details
(methods, classifiers, etc.) about the signature.

If this file is located in the same directory as the mutations file, OncodriveFML loads it
as long as it does not receive any file with blacklisted samples
and the only_mapped_mutations option is not used
(see signature configuration).

BgData

OncodriveFML uses external data retrieved using the BgData package [https://bitbucket.org/bgframework/bgdata].
You can download and check this data yourself. If you want to
use different data, you can download the source code
and modify the code to use your own data.

Reference genome

As March 2017 BgData includes three reference genomes: HG18, HG19
and HG38.

bgdata datasets genomereference hg19

If you want to use a different genome, you need to
modify the code in the oncodrivefml.signature module.

Signature correction

BgData includes the counts of the triplets
in whole exome and whole genome.

bgdata datasets exomesignature hg19

bgdata datasets genomesignature hg19

Those counts are used to compute the trinucleotides
frequencies and to perform signature correction
(find more details in the signature section
and in the signature configuration).

Gene stops

OncodriveFML also uses a tabix file that contains the
positions and the alterations of the gene stops.

bgdata datasets genestops hg19

Caveats

MNP mutations contribute to the
signatures as a set of independent SNPs mutations.
This means that the calculation of the signatures is
made with a higher number of mutations compared
to the observed substitutions being analysed because OncodriveFML
simulates a MNP mutation as a single SNP mutation.

If the scores files lacks scores for some positions
or certain alterations, OncodriveFML ignores them.

If, for any reason, your signatures lack certain
triplets (probability equal to 0) that are the only ones present in certain
region, OncodriveFML will not compute a P-value
for that region.

OncodriveFML statistical power is limited
by the number of simulations performed in each regions.
You can increase the number of simulations,
but be aware that the time cost is exponential.

Indels do not contribute to the signatures.
You can simulate indels as substitutions and perform the
simulations taking the signatures into account, but
be aware that the signatures are not calculated considering indels.

On the other hand, if you choose to not use the
signatures with the indels, their probability
is the inverse of the number of distinct
trinucleotides for all the regions multiplied
by three (there are 3 possible changes).
Typically the value should be 1/192,
and that is the default value OncodriveFML uses.
If OncodriveFML corrects the signatures,
it obtains the number of distinct triplets
from the correction.

Depending on the values of sampling_min_obs and
sampling_chunk in the configuration file
the number of simulations performed
for a particular genomic element can differ.

oncodrivefml

	oncodrivefml package
	Subpackages
	oncodrivefml.executors package
	Submodules

	oncodrivefml.executors.bymutation module

	oncodrivefml.executors.bysample module

	oncodrivefml.executors.element module

	Module contents

	Submodules

	oncodrivefml.compute module

	oncodrivefml.config module

	oncodrivefml.indels module

	oncodrivefml.load module

	oncodrivefml.main module

	oncodrivefml.mtc module

	oncodrivefml.scores module

	oncodrivefml.signature module

	oncodrivefml.stats module

	oncodrivefml.store module

	oncodrivefml.utils module

	oncodrivefml.walker module

	oncodrivefml.walker_cython module

	Module contents

oncodrivefml package

Subpackages

	oncodrivefml.executors package
	Submodules

	oncodrivefml.executors.bymutation module

	oncodrivefml.executors.bysample module

	oncodrivefml.executors.element module

	Module contents

Submodules

oncodrivefml.compute module

	
oncodrivefml.compute.gmean(a)

	

	
oncodrivefml.compute.gmean_weighted(vectors, weights)

	

	
oncodrivefml.compute.random_scores(num_samples, sampling_size, background, signature, statistic_name)

	

oncodrivefml.config module

This module contains code related with the configuration file (see Configuration).

Additionally, it includes other file realted code, specially from bgconfig.

	
oncodrivefml.config.load_configuration(config_file, override=None)

	Load the configuration file and checks the format.

	Parameters

	config_file – configuration file path

	Returns

	configuration as a dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Return type

	bgconfig.BGConfig

	
oncodrivefml.config.possible_extensions = [‘.gz’, ‘.xz’, ‘.bz2’, ‘.tsv’, ‘.txt’]

	Some expected extensions

	
oncodrivefml.config.remove_extension_and_replace_special_characters(file_path)

	Modifies the name of a file by removing any extension in possible_extensions
and replacing any character in special_characters for -.

	Parameters

	file_path – path to a file

	Returns

	file name modified

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
oncodrivefml.config.special_characters = [‘.’, ‘_’]

	Some special characters

oncodrivefml.indels module

This module contains all utilities to process
insertions and deletions.

Currently 3 methods have been implemented to compute
the impact of the indels.

	As a set of substitutions (‘max’):

The indel is treated as set of substitutions.
It is used for non-coding regions

The functional impact of the observed mutation is the maximum
of all the substitutions.
The background is simulated as substitutions are.

	As a stop (‘stop’):

The indel is expected to produce a stop in the genome,
unless it is a frame-shift indel.
It is used for coding regions.

The functional impact is derived from the function impact
of the stops of the gene.
The background is simulated also as stops.

	
class oncodrivefml.indels.Indel(scores, strand)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Methods to compute the impact of indels
for the observed and the background

	Parameters

	
	scores (Scores) – functional impact per position

	signature (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – see signature

	signature_id (str [https://docs.python.org/2/library/functions.html#str]) – classifier for the signatures

	method (str [https://docs.python.org/2/library/functions.html#str]) – identifies which method to use to compute the functional impact
(see methods)

	strand (str [https://docs.python.org/2/library/functions.html#str]) – if the element being analysed has positive, negative or unknown strand (+,-,.)

	
compute_scores(reference, alternation, initial_position, size)

	Compute the scores of all substitution between the reference and altered sequences

	Parameters

	
	reference (str [https://docs.python.org/2/library/functions.html#str]) – sequence

	alternation (str [https://docs.python.org/2/library/functions.html#str]) – sequence

	initial_position (int [https://docs.python.org/2/library/functions.html#int]) – position where the indel occurs

	size (int [https://docs.python.org/2/library/functions.html#int]) – number of position to look

	Returns

	Scores of the substitution in the indel. nan when it is not possible
to compute a value.

	Return type

	list

	
get_background_indel_scores_as_stops()

	
	Returns

	Values of the stop scores of the gene

	Return type

	list

	
get_background_indel_scores_as_substitutions_without_signature()

	Return the values of scores of all possible substitutions
:returns: list.

	
get_indel_score_from_stop(mutation)

	Compute the indel score as a stop

A function is applied to the values of the scores in the gene

	Parameters

	mutation (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a mutation object as in here

	Returns

	Score value. nan if is not possible to compute it

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	
get_indel_score_max_of_subs(mutation)

	Compute the score of an indel by treating each alteration as
a substitution.

	Parameters

	mutation (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a mutation object as in here

	Returns

	Maximum value of all substitutions

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	
get_mutation_sequences(mutation, size)

	Get the reference and altered sequence of the indel
along the window size

	Parameters

	
	mutation (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a mutation object as in here

	size (int [https://docs.python.org/2/library/functions.html#int]) – window length

	Returns

	Reference and alternated sequences

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple]

	
static is_frameshift(size)

	
	Parameters

	size (int [https://docs.python.org/2/library/functions.html#int]) – length of the indel

	Returns

	bool. Whether the size is multiple of 3 (in the frames have been
enabled in the configuration)

	
is_in_repetitive_region(mutation)

	Check if an indel falls in a repetitive region

Looking in the window with the indel in the middle, check if the
same sequence of the indel appears at least a certain number of times
specified in the configuration.
The window where to look has twice the size of the indel multiplied by
the number of times already mentioned.

	Parameters

	mutation (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a mutation object as in here

	Returns

	Whether the indel falls in a repetitive region or not

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
not_found(mutation)

	

	
class oncodrivefml.indels.StopsScore(funct_type)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
choose(x)

	

	
function(x)

	

	
mean(x)

	

	
median(x)

	

	
random(x)

	

	
oncodrivefml.indels.init_indels_module(indels_config)

	Initialize the indels module

	Parameters

	indels_config (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – configuration of how to compute the impact of indels

oncodrivefml.load module

This module contains the methods used to
load and parse the input files: elements and mutations

	elements (dict [https://docs.python.org/2/library/stdtypes.html#dict])

	contains all the segments related to one element. The information is taken from
the elements_file.
Basic structure:

{ element_id:
 [
 {
 'CHROMOSOME': chromosome,
 'START': start_position_of_the_segment,
 'STOP': end_position_of_the_segment,
 'STRAND': strand (+ -> positive | - -> negative)
 'ELEMENT': element_id,
 'SEGMENT': segment_id,
 'SYMBOL': symbol_id
 }
]
}

	mutations (dict [https://docs.python.org/2/library/stdtypes.html#dict])

	contains all the mutations for each element. Most of the information is taken from
the mutations_file but the element_id and the segment that are taken from the elements.
More information is added during the execution.
Basic structure:

{ element_id:
 [
 {
 'CHROMOSOME': chromosome,
 'POSITION': position_where_the_mutation_occurs,
 'REF': reference_sequence,
 'ALT': alteration_sequence,
 'SAMPLE': sample_id,
 'ALT_TYPE': type_of_the_mutation,
 'CANCER_TYPE': group to which the mutation belongs to,
 'SIGNATURE': a different grouping category,
 }
]
}

	mutations_data (dict [https://docs.python.org/2/library/stdtypes.html#dict])

	contains the mutations dict and some metadata information about the mutations.
Currently, the number of substitutions and indels.
Basic structure:

{
 'data':
 {
 `mutations dict`_
 },
 'metadata':
 {
 'snp': amount of SNP mutations
 'mnp': amount of MNP mutations
 'mnp_length': total length of the MNP mutations
 'indel': amount of indels
 }
}

	
oncodrivefml.load.build_regions_tree(regions)

	Generates a binary tree with the intervals of the regions

	Parameters

	regions (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – segments grouped by elements.

	Returns

	for each chromosome, it get one IntervalTree which
is a binary tree. The leafs are intervals [low limit, high limit) and the value associated with each interval
is the tuple [https://docs.python.org/2/library/functions.html#tuple] (element, segment).
It can be interpreted as:

{ chromosome:
 (start_position, stop_position +1): (element, segment)
}

	Return type

	dict of IntervalTree

	
oncodrivefml.load.load_and_map_variants(variants_file, elements_file, blacklist=None, save_pickle=False)

	From the elements and variants file, get dictionaries with the segments grouped by element ID and the
mutations grouped in the same way, as well as some information related to the mutations.

	Parameters

	
	variants_file – mutations file (see OncodriveFML)

	elements_file – elements file (see OncodriveFML)

	blacklist (optional) – file with blacklisted samples (see OncodriveFML). Defaults to None.
If the blacklist option is passed, the mutations are not loaded from a pickle file.

	save_pickle (bool [https://docs.python.org/2/library/functions.html#bool], optional) – save pickle files

	Returns

	mutations and elements

Elements: elements dict

Mutations: mutations data dict

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple]

	The process is done in 3 steps:

	
	load_regions()

	build_regions_tree().

	each mutation (load_mutations()) is associated with the right
element ID

	
oncodrivefml.load.load_mutations(file, blacklist=None, metadata_dict=None)

	Parsed the mutations file

	Parameters

	
	file – mutations file (see OncodriveFML)

	metadata_dict (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – dict that the function will fill with useful information

	blacklist (optional) – file with blacklisted samples (see OncodriveFML).
Defaults to None.

	Yields

	One line from the mutations file as a dictionary. Each of the inner elements of
mutations

oncodrivefml.main module

oncodrivefml.mtc module

Module containing functions related to
multiple test correction

	
oncodrivefml.mtc.multiple_test_correction(results, num_significant_samples=2)

	Performs a multiple test correction on the analysis results

	Parameters

	
	results (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – dictionary with the results

	num_significant_samples (int [https://docs.python.org/2/library/functions.html#int]) – mininum samples that a gene must have in order to perform the correction

	Returns

	DataFrame [http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.DataFrame.html#pandas.DataFrame]. DataFrame with the q-values obtained from a multiple test correction

oncodrivefml.scores module

This module contains the methods associated with the
scores that are assigned to the mutations.

The scores are read from a file.

Information about the stop scores.

As of December 2016, we have only measured
the stops using CADD1.0.

The stops of a gene retrieved only if there are
ast least 3 stops in the regions being analysed.
If not, a formula is applied to derived the
value of the stops from the rest of the
values.

Note

This formula was obtained using the CADD scores
of the coding regions. Using a different regions
or scores files will make the function to return
totally nonsense values.

	
class oncodrivefml.scores.PackScoresReader(conf)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
BIT_TO_REF = {(1, 0, 0): ‘G’, (0, 1, 1): ‘C’, (0, 1, 0): ‘A’, (0, 0, 0): ‘?’, (0, 0, 1): ‘T’}

	

	
SCORE_ALT = {‘T’: ‘ACG’, ‘C’: ‘AGT’, ‘G’: ‘ACT’, ‘A’: ‘CGT’}

	

	
SCORE_ORDER = {‘T’: {‘G’: 2, ‘C’: 1, ‘A’: 0}, ‘C’: {‘G’: 1, ‘T’: 2, ‘A’: 0}, ‘G’: {‘T’: 2, ‘C’: 1, ‘A’: 0}, ‘A’: {‘G’: 1, ‘T’: 2, ‘C’: 0}}

	

	
STRUCT_SIZE = 6

	

	
get(chromosome, start, stop, *args, **kwargs)

	

	
unpack(block)

	

	
exception oncodrivefml.scores.ReaderError(msg)

	Bases: Exception

	
exception oncodrivefml.scores.ReaderGetError(chr, start, stop)

	Bases: oncodrivefml.scores.ReaderError

	
class oncodrivefml.scores.ScoreValue(ref, alt, value, ref_triplet, alt_triplet)

	Bases: tuple

Tuple that contains the reference, the alteration, the score value and the triplets

	Parameters

	
	ref (str [https://docs.python.org/2/library/functions.html#str]) – reference base

	alt (str [https://docs.python.org/2/library/functions.html#str]) – altered base

	value (float [https://docs.python.org/2/library/functions.html#float]) – score value of that substitution

	ref_triplet (str [https://docs.python.org/2/library/functions.html#str]) – reference triplet

	alt_triplet (str [https://docs.python.org/2/library/functions.html#str]) – altered triplet

	
alt

	Alias for field number 1

	
alt_triplet

	Alias for field number 4

	
ref

	Alias for field number 0

	
ref_triplet

	Alias for field number 3

	
value

	Alias for field number 2

	
class oncodrivefml.scores.Scores(element: str, segments: list, config: dict)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	Parameters

	
	element (str [https://docs.python.org/2/library/functions.html#str]) – element ID

	segments (list) – list of the segments associated to the element

	config (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – configuration

	
scores_by_pos

	dict – for each positions get all possible changes, and for each change the triplets

{ position:
 [
 ScoreValue(
 ref,
 alt_1,
 value,
 ref_triplet,
 alt_triple
),
 ScoreValue(
 ref,
 alt_2,
 value,
 ref_triplet,
 alt_triple
),
 ScoreValue(
 ref,
 alt_3,
 value,
 ref_triplet,
 alt_triple
)
]
}

	
get_all_positions() → typing.List[int]

	Get all positions in the element

	Returns

	list of positions

	Return type

	list of int [https://docs.python.org/2/library/functions.html#int]

	
get_score_by_position(position: int) → typing.List[oncodrivefml.scores.ScoreValue]

	Get all ScoreValue objects that are asocated with that position

	Parameters

	position (int [https://docs.python.org/2/library/functions.html#int]) – position

	Returns

	list of all ScoreValue related to that positon

	Return type

	list of ScoreValue

	
get_stop_scores()

	Get the scores of the stops in a gene that fall in the regions
being analyzed

	
class oncodrivefml.scores.ScoresTabixReader(conf)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
get(chromosome, start, stop, element=None)

	

	
oncodrivefml.scores.init_scores_module(conf)

	

	
oncodrivefml.scores.null(x)

	

	
oncodrivefml.scores.stop_function(x)

	

oncodrivefml.signature module

This module contains information related with the signature.

The signature is a way of assigning probabilities to certain mutations that have some
relation amongst them (e.g. cancer type, sample…).

This relation is identified by the signature_id.

The classifier parameter in the configuration of the signature
specifies which column of the mutations file (MUTATIONS_HEADER) is used as
the identifier for the different signature groups.
If the column does not exist the classifier itself is used as value for the
signature_id.

The probabilities are taken only from substitutions. For them, the two bases that
surround the mutated one are taken into account. This is called the triplet.
For a certain mutation in a position x the reference triplet is the base in the
reference genome in position x-1, the base in x and the base in the x+1. The altered triplet
of the same mutation is equal for the bases in x-1 and x+1 but the base in x is the one
observed in the mutation.

signature (dict [https://docs.python.org/2/library/stdtypes.html#dict])

{ signature_id:
 {
 (ref_triplet, alt_triplet): prob
 }
}

	
oncodrivefml.signature.change_ref_build(build)

	Modify the default build fo the reference genome

	Parameters

	build (str [https://docs.python.org/2/library/functions.html#str]) – genome reference build

	
oncodrivefml.signature.chunkizator(iterable, size=1000)

	Creates chunks from an iterable

	Parameters

	
	iterable –

	size (int [https://docs.python.org/2/library/functions.html#int]) – elements in the chunk

	Returns

	list. Chunk

	
oncodrivefml.signature.collapse_complementaries(signature)

	Add to the amount of a certain pair (ref_triplet, alt_triplet) the amount of the complementary.

	Parameters

	signature (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – { (ref_triplet, alt_triplet): amount }

	Returns

	{ (ref_triplet, alt_triplet): new_amount }. New_amount is the addition of the amount
for (ref_triplet, alt_triplet) and the amount for (complementary_ref_triplet, complementary_alt_triplet)

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
oncodrivefml.signature.complementary_sequence(seq)

	
	Parameters

	seq (str [https://docs.python.org/2/library/functions.html#str]) – sequence of bases

	Returns

	complementary sequence

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
oncodrivefml.signature.compute_regions_signature(elements, cores)

	Counts triplets in the elements

	Parameters

	
	elements –

	cores (int [https://docs.python.org/2/library/functions.html#int]) – cores to use

	Returns

	collections.Counter [https://docs.python.org/2/library/collections.html#collections.Counter]. Counts of the triplets in the elements

	
oncodrivefml.signature.compute_signature(signature_function, classifier, collapse=False, include_mnp=False)

	Gets the probability of each substitution that occurs for a certain signature_id.

Each substitution is identified by the pair (reference_triplet, altered_triplet).

The signature_id is taken from the mutations field corresponding to the classifier.

	Parameters

	
	signature_function – function that yields one mutation each time

	classifier (str [https://docs.python.org/2/library/functions.html#str]) – passed to load_mutations()
as parameter signature_classifier.

	collapse (bool [https://docs.python.org/2/library/functions.html#bool]) – consider one substitutions and the complementary one as the same. Defaults to True.

	include_mnp (bool [https://docs.python.org/2/library/functions.html#bool]) – use MNP mutation in the signature computation or not

	Returns

	probability of each substitution (measured by the triplets) grouped by the signature_classifier

{ signature_id:
 {
 (ref_triplet, alt_triplet): prob
 }
}

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Warning

Only substitutions (MNP are optional) are taken into account

	
oncodrivefml.signature.correct_signature_by_triplets_frequencies(signature, triplets_frequencies)

	Normalized de signature by the frequency of the triplets

	Parameters

	
	signature (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – see signature

	triplets_frequencies (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – {triplet: frequency}

	Returns

	dict. Normalized signature

	
oncodrivefml.signature.count_valid_trinucleotides(trinucleotides_dict)

	Count how many trinucleotides are valid

	Parameters

	trinucleotides_dict (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – trinucleotides counts

	Returns

	int. Valid trinucleotides

	
oncodrivefml.signature.get_alternate_signature(line)

	
	Parameters

	line (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – contains the previous base, the alteration and the next base

	Returns

	triplet with the central base replaced by the alteration indicated in the line

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
oncodrivefml.signature.get_build()

	

	
oncodrivefml.signature.get_normalized_frequencies(signature, triplets_frequencies)

	Divides the frequency of each triplet alteration by the
frequency of the reference triplet to get the normalized
signature

	Parameters

	
	signature (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – {(ref_triplet, alt_triplet): counts}

	triplets_frequencies (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – {triplet: frequency}

	Returns

	dict. Normalized signature

	
oncodrivefml.signature.get_ref(chromosome, start, size=1)

	Gets a sequence from the reference genome

	Parameters

	
	chromosome (str [https://docs.python.org/2/library/functions.html#str]) – chromosome

	start (int [https://docs.python.org/2/library/functions.html#int]) – start position where to look

	size (int [https://docs.python.org/2/library/functions.html#int]) – number of bases to retrieve

	Returns

	str. Sequence from the reference genome

	
oncodrivefml.signature.get_ref_triplet(chromosome, start)

	
	Parameters

	
	chromosome (str [https://docs.python.org/2/library/functions.html#str]) – chromosome identifier

	start (int [https://docs.python.org/2/library/functions.html#int]) – starting position

	Returns

	3 bases from the reference genome

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
oncodrivefml.signature.get_reference_signature(line)

	
	Parameters

	line (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – contatins the chromosome and the position

	Returns

	triplet around certain positions

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
oncodrivefml.signature.is_valid_trinucleotides(trinucleotide)

	Check if a trinucleotide has a nucleotide distinct than A, C, G, T
:param trinucleotide: triplet
:type trinucleotide: str

	Returns

	bool.

	
oncodrivefml.signature.load_signature(signature_config, signature_function, trinucleotides_counts=None, load_pickle=None, save_pickle=False)

	Computes the probability that certain mutation occurs.

	Parameters

	
	signature_config (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – information of the signature (see configuration)

	signature_function – function that yields one mutation each time

	trinucleotides_counts (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – counts of trincleotides used to correct the signature

	load_pickle (str [https://docs.python.org/2/library/functions.html#str], optional) – path to the pickle file

	save_pickle (str [https://docs.python.org/2/library/functions.html#str], optional) – path to pickle file

	Returns

	probability of each substitution (measured by the triplets) grouped by the signature_id

{ signature_id:
 {
 (ref_triplet, alt_triplet): prob
 }
}

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Before computing the signature, it is checked whether a pickle file with the signature already exists or not.

	
oncodrivefml.signature.load_trinucleotides_counts(region)

	Get the trinucleotides counts for a precomputed
region: whole exome or whole genome

	Parameters

	region (str [https://docs.python.org/2/library/functions.html#str]) – whole genome or whole exome

	Returns

	dict. Counts of the different trinucleotides

	
oncodrivefml.signature.ref_build = ‘hg19’

	Build of the Reference Genome

	
oncodrivefml.signature.sum2one_dict(signature_counts)

	Associates to each key (tuple(reference_tripet, altered_triplet)) the value divided by the total amount

	Parameters

	signature_counts (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – pair key-amount {(ref_triplet, alt_triplet): value}

	Returns

	pair key-(amount/total_amount)

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
oncodrivefml.signature.triplet_counter_executor(elements)

	For a list of regions, get all the triplets present
in all the segments

	Parameters

	elements (list of list) – list of lists of segments

	Returns

	collections.Counter [https://docs.python.org/2/library/collections.html#collections.Counter]. Count of each triplet in the regions

	
oncodrivefml.signature.triplets(sequence)

	
	Parameters

	sequence (str [https://docs.python.org/2/library/functions.html#str]) – sequence of nucleotides

	Yields

	str. Triplet

	
oncodrivefml.signature.yield_mutations(mutations)

	Yields one mutation each time from
a list of mutations

	Parameters

	mutations (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – mutations

	Yields

	Mutation

oncodrivefml.stats module

This modules contains different statistical methods used to compare
the observed and the simulated scores

	
class oncodrivefml.stats.ArithmeticMean

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
static calc(values)

	Computes the arithmetic mean

	Parameters

	values (list, array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – array of values

	Returns

	mean value

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	
static calc_observed(values, observed)

	Measure how many times the mean of the values is higher than the mean of the observed values

	Parameters

	
	values (array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – m x n matrix with scores (m: number of randomizations; n: number of mutations)

	observed (list, array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – n size vector with the observed scores (n: number of mutations)

	Returns

	
	the number of times that the mean value of a randomization is greater or equal than the mean observed value

	(as int [https://docs.python.org/2/library/functions.html#int]) and the number of times that the mean value of a randomization is equal or lower than the mean
observed value (as int [https://docs.python.org/2/library/functions.html#int]).

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple]

	
class oncodrivefml.stats.ArithmeticMeanHeteroscedasticScores

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
static calc_observed(values, observed)

	

	
class oncodrivefml.stats.GeometricMean

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The geometric mean used is not the standard.

[image: (\prod \limits_{i=1}^n (x_i+1))^{1/n}-1 &= \sqrt[n]{(x_1+1)(x_2+1) \cdots (x_n+1)} -1]

	
static calc(values)

	Computes the geometric mean of a set of values.

	Parameters

	values (list, array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – set of values

	Returns

	geometric mean
(array): geometric mean by columns (if the input is a matrix)

	Return type

	(float [https://docs.python.org/2/library/functions.html#float])

	
static calc_observed(values, observed)

	
Measure how many times the geometric mean of the values is higher than the geometric mean of the observed values

	Parameters

	
	values (array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – m x n matrix with scores (m: number of randomizations; n: number of mutations)

	observed (list, array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – n size vector with the observed scores (n: number of mutations)

	Returns

	
	the number of times that the mean value of a randomization is greater or equal than the mean observed value

	(as int [https://docs.python.org/2/library/functions.html#int]) and the number of times that the mean value of a randomization is equal or lower than the mean
observed value (as int [https://docs.python.org/2/library/functions.html#int]).

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple]

	
class oncodrivefml.stats.Maximum

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
static calc(values)

	

	
static calc_observed(values, observed)

	

oncodrivefml.store module

This module contains the methods used to store the results.

3 different types of output are available:

	tsv file

	png graph: uses the tsv file and matplotlib

	html graph: uses the tsv file and bokeh

	
class oncodrivefml.store.QQPlot(input_file, cutoff=True, rename_fields=None, extra_fields=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	Parameters

	
	input_file – tsv file with the data

	cutoff (bool [https://docs.python.org/2/library/functions.html#bool]) – add cutoffs to the figure

	rename_fields (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – column names from the input file can be renamed providing a dictionary {old_name : new_name}

	extra_fields (list) – list of column names that want to be passed to the figure data. Need for example to
search by them.

	
add_search_widget(fields)

	Add text input for each field.

	Parameters

	fields (str [https://docs.python.org/2/library/functions.html#str] or list) – list of fields to do a search.

	
add_tooltip()

	Adds tooltip to show the parameters of each glyph in the figure

	
add_tooltip_enhanced()

	The tooltip is shown via JavaScript to avoid been block in areas with a
high density of points

	
show(output_path, showit=True, notebook=False)

	Show the figure

	Parameters

	
	output_path – file where to store the figure

	showit (bool [https://docs.python.org/2/library/functions.html#bool]) – the figure is displayed (widgets and the like are not shown) or is fully saved. Defaults to True.

	notebook (bool [https://docs.python.org/2/library/functions.html#bool]) – if is is called form a notebook or not. Defaults to False.

	
oncodrivefml.store.add_symbol(df)

	

	
oncodrivefml.store.eliminate_duplicates(df)

	

	
oncodrivefml.store.store_html(input_file, output_path)

	Create the QQPlot and save it.

	Parameters

	
	input_file – tsv filw with the data

	output_path – file where to store the graph

	showit (bool [https://docs.python.org/2/library/functions.html#bool]) – defaults to False. See show().

	
oncodrivefml.store.store_png(input_file, output_file, showit=False)

	Creates a figure from the resutls.

	Parameters

	
	input_file – tsv file with the results

	output_file – file where to store the figure

	showit (bool [https://docs.python.org/2/library/functions.html#bool]) – calls show() [http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show] before returning.
Defaults to False.

	
oncodrivefml.store.store_tsv(results, result_file)

	Saves the results in a tsv file sorted by pvalue

	Parameters

	
	results (DataFrame [http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.DataFrame.html#pandas.DataFrame]) – results of the analysis

	result_file – file where to store the results

oncodrivefml.utils module

This module contains some useful methods

	
oncodrivefml.utils.defaultdict_list()

	Shortcut

	Returns

	defaultdict [https://docs.python.org/2/library/collections.html#collections.defaultdict] of list

	
oncodrivefml.utils.executor_run(executor)

	Method to call the run method

	Parameters

	executor (ElementExecutor) –

	Returns

	run()

	
oncodrivefml.utils.exists_path(path)

	

	
oncodrivefml.utils.loop_logging(iterable, size=None, step=1)

	Loop through an iterable object displaying messages
using info() [https://docs.python.org/2/library/logging.html#logging.info]

	Parameters

	
	iterable –

	size (int [https://docs.python.org/2/library/functions.html#int]) – Defaults to None.

	step (int [https://docs.python.org/2/library/functions.html#int]) – Defaults to 1.

	Yields

	The iterable element

oncodrivefml.walker module

oncodrivefml.walker_cython module

Module contents

oncodrivefml.executors package

Submodules

oncodrivefml.executors.bymutation module

oncodrivefml.executors.bysample module

oncodrivefml.executors.element module

Module contents

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oncodrivefml	

 	
 	
 oncodrivefml.compute	

 	
 	
 oncodrivefml.config	

 	
 	
 oncodrivefml.executors	

 	
 	
 oncodrivefml.indels	

 	
 	
 oncodrivefml.load	

 	
 	
 oncodrivefml.mtc	

 	
 	
 oncodrivefml.scores	

 	
 	
 oncodrivefml.signature	

 	
 	
 oncodrivefml.stats	

 	
 	
 oncodrivefml.store	

 	
 	
 oncodrivefml.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | Y

A

 	
 	add_search_widget() (oncodrivefml.store.QQPlot method)

 	add_symbol() (in module oncodrivefml.store)

 	add_tooltip() (oncodrivefml.store.QQPlot method)

 	add_tooltip_enhanced() (oncodrivefml.store.QQPlot method)

 	
 	alt (oncodrivefml.scores.ScoreValue attribute)

 	alt_triplet (oncodrivefml.scores.ScoreValue attribute)

 	ArithmeticMean (class in oncodrivefml.stats)

 	ArithmeticMeanHeteroscedasticScores (class in oncodrivefml.stats)

B

 	
 	BIT_TO_REF (oncodrivefml.scores.PackScoresReader attribute)

 	
 	build_regions_tree() (in module oncodrivefml.load)

C

 	
 	calc() (oncodrivefml.stats.ArithmeticMean static method)

 	(oncodrivefml.stats.GeometricMean static method)

 	(oncodrivefml.stats.Maximum static method)

 	calc_observed() (oncodrivefml.stats.ArithmeticMean static method)

 	(oncodrivefml.stats.ArithmeticMeanHeteroscedasticScores static method)

 	(oncodrivefml.stats.GeometricMean static method)

 	(oncodrivefml.stats.Maximum static method)

 	change_ref_build() (in module oncodrivefml.signature)

 	
 	choose() (oncodrivefml.indels.StopsScore method)

 	chunkizator() (in module oncodrivefml.signature)

 	collapse_complementaries() (in module oncodrivefml.signature)

 	complementary_sequence() (in module oncodrivefml.signature)

 	compute_regions_signature() (in module oncodrivefml.signature)

 	compute_scores() (oncodrivefml.indels.Indel method)

 	compute_signature() (in module oncodrivefml.signature)

 	correct_signature_by_triplets_frequencies() (in module oncodrivefml.signature)

 	count_valid_trinucleotides() (in module oncodrivefml.signature)

D

 	
 	defaultdict_list() (in module oncodrivefml.utils)

E

 	
 	eliminate_duplicates() (in module oncodrivefml.store)

 	
 	executor_run() (in module oncodrivefml.utils)

 	exists_path() (in module oncodrivefml.utils)

F

 	
 	function() (oncodrivefml.indels.StopsScore method)

G

 	
 	GeometricMean (class in oncodrivefml.stats)

 	get() (oncodrivefml.scores.PackScoresReader method)

 	(oncodrivefml.scores.ScoresTabixReader method)

 	get_all_positions() (oncodrivefml.scores.Scores method)

 	get_alternate_signature() (in module oncodrivefml.signature)

 	get_background_indel_scores_as_stops() (oncodrivefml.indels.Indel method)

 	get_background_indel_scores_as_substitutions_without_signature() (oncodrivefml.indels.Indel method)

 	get_build() (in module oncodrivefml.signature)

 	get_indel_score_from_stop() (oncodrivefml.indels.Indel method)

 	
 	get_indel_score_max_of_subs() (oncodrivefml.indels.Indel method)

 	get_mutation_sequences() (oncodrivefml.indels.Indel method)

 	get_normalized_frequencies() (in module oncodrivefml.signature)

 	get_ref() (in module oncodrivefml.signature)

 	get_ref_triplet() (in module oncodrivefml.signature)

 	get_reference_signature() (in module oncodrivefml.signature)

 	get_score_by_position() (oncodrivefml.scores.Scores method)

 	get_stop_scores() (oncodrivefml.scores.Scores method)

 	gmean() (in module oncodrivefml.compute)

 	gmean_weighted() (in module oncodrivefml.compute)

I

 	
 	Indel (class in oncodrivefml.indels)

 	init_indels_module() (in module oncodrivefml.indels)

 	init_scores_module() (in module oncodrivefml.scores)

 	
 	is_frameshift() (oncodrivefml.indels.Indel static method)

 	is_in_repetitive_region() (oncodrivefml.indels.Indel method)

 	is_valid_trinucleotides() (in module oncodrivefml.signature)

L

 	
 	load_and_map_variants() (in module oncodrivefml.load)

 	load_configuration() (in module oncodrivefml.config)

 	load_mutations() (in module oncodrivefml.load)

 	
 	load_signature() (in module oncodrivefml.signature)

 	load_trinucleotides_counts() (in module oncodrivefml.signature)

 	loop_logging() (in module oncodrivefml.utils)

M

 	
 	Maximum (class in oncodrivefml.stats)

 	mean() (oncodrivefml.indels.StopsScore method)

 	
 	median() (oncodrivefml.indels.StopsScore method)

 	multiple_test_correction() (in module oncodrivefml.mtc)

N

 	
 	not_found() (oncodrivefml.indels.Indel method)

 	
 	null() (in module oncodrivefml.scores)

O

 	
 	oncodrivefml (module)

 	oncodrivefml.compute (module)

 	oncodrivefml.config (module)

 	oncodrivefml.executors (module)

 	oncodrivefml.indels (module)

 	oncodrivefml.load (module)

 	
 	oncodrivefml.mtc (module)

 	oncodrivefml.scores (module)

 	oncodrivefml.signature (module)

 	oncodrivefml.stats (module)

 	oncodrivefml.store (module)

 	oncodrivefml.utils (module)

P

 	
 	PackScoresReader (class in oncodrivefml.scores)

 	
 	possible_extensions (in module oncodrivefml.config)

Q

 	
 	QQPlot (class in oncodrivefml.store)

R

 	
 	random() (oncodrivefml.indels.StopsScore method)

 	random_scores() (in module oncodrivefml.compute)

 	ReaderError

 	ReaderGetError

 	
 	ref (oncodrivefml.scores.ScoreValue attribute)

 	ref_build (in module oncodrivefml.signature)

 	ref_triplet (oncodrivefml.scores.ScoreValue attribute)

 	remove_extension_and_replace_special_characters() (in module oncodrivefml.config)

S

 	
 	SCORE_ALT (oncodrivefml.scores.PackScoresReader attribute)

 	SCORE_ORDER (oncodrivefml.scores.PackScoresReader attribute)

 	Scores (class in oncodrivefml.scores)

 	scores_by_pos (oncodrivefml.scores.Scores attribute)

 	ScoresTabixReader (class in oncodrivefml.scores)

 	ScoreValue (class in oncodrivefml.scores)

 	show() (oncodrivefml.store.QQPlot method)

 	
 	special_characters (in module oncodrivefml.config)

 	stop_function() (in module oncodrivefml.scores)

 	StopsScore (class in oncodrivefml.indels)

 	store_html() (in module oncodrivefml.store)

 	store_png() (in module oncodrivefml.store)

 	store_tsv() (in module oncodrivefml.store)

 	STRUCT_SIZE (oncodrivefml.scores.PackScoresReader attribute)

 	sum2one_dict() (in module oncodrivefml.signature)

T

 	
 	triplet_counter_executor() (in module oncodrivefml.signature)

 	
 	triplets() (in module oncodrivefml.signature)

U

 	
 	unpack() (oncodrivefml.scores.PackScoresReader method)

V

 	
 	value (oncodrivefml.scores.ScoreValue attribute)

Y

 	
 	yield_mutations() (in module oncodrivefml.signature)

 OncodriveFML is a project developed by the Barcelona Biomedical Genomics Lab [http://bbglab.irbbarcelona.org].

We are a research group integrated in
the Institute for Research Biomedicine [https://www.irbbarcelona.org] in Barcelona,
which is part of the Barcelona Institute of Science and Technology [http://bist.eu].
Our lab is located at the Barcelona Science Park [http://www.pcb.ub.edu].

Our main research interest [http://bbglab.irbbarcelona.org/web/index.php/research/] is
the computational study of cancer at the genomic level.

Readme

OncodriveFML

Recent years saw the development of methods to detect signals of positive selection in the pattern of somatic mutations in genes across cohorts of tumors, and the discovery of hundreds of driver genes. The next major challenge in tumor genomics is the identification of non-coding regions which may also drive tumorigenesis. We present OncodriveFML, a method that estimates the accumulated functional impact bias of somatic mutations in any genomic region of interest based on a local simulation of the mutational process affecting it. It may be applied to all genomic elements to detect likely drivers amongst them. OncodriveFML can discover signals of positive selection when only a small fraction of the genome, like a panel of genes, has been sequenced.

License

OncodriveFML is made available to the general public subject to certain conditions described in its LICENSE. For the avoidance of doubt, you may use the software and any data accessed through UPF software for academic, non-commercial and personal use only, and you may not copy, distribute, transmit, duplicate, reduce or alter in any way for commercial purposes, or for the purpose of redistribution, without a license from the Universitat Pompeu Fabra (UPF). Requests for information regarding a license for commercial use or redistribution of OncodriveFML may be sent via e-mail to innovacio@upf.edu.

Installation

OncodriveFML depends on Python 3.5 and some external libraries.
The easiest way to install all this software stack is using the well known Anaconda Python distribution [http://continuum.io/downloads]:

$ conda install -c bbglab oncodrivefml

OncodriveFML can also be installed using pip:

pip install oncodrivefml

Finally, you can get the latest code from the repository and install with pip:

$ git clone git@bitbucket.org:bbglab/oncodrivefml.git
$ cd oncodrivefml
$ pip install .

Note

OncodriveFML has a set up dependency with Cython [http://cython.org/],
which is required to compile the *.pyx files.

The first time that you run OncodriveFML it will download the genome reference from our servers.
By default the downloaded datasets go to ~/.bgdata if you want to move these datasets to another folder you have to define the system environment variable BGDATA_LOCAL with an export command.

The following command will show you the help:

$ oncodrivefml --help

Run the example

Download and extract the example files (if you cloned the repository skip this step):

$ wget https://bitbucket.org/bbglab/oncodrivefml/downloads/oncodrivefml-examples_v2.0.tar.gz
$ tar xvzf oncodrivefml-examples_v2.0.tar.gz

To run this example OncodriveFML needs all the precomputed CADD scores, that is a 17Gb file.
It will be automatically downloaded the first time you run OncodriveFML,
but if you want to speed up the process it is better to first download it using
our data package management tool (BgData) that is also installed when you install OncodriveFML.

Run this command to download the CADD scores file to the default bgdata folder ~/.bgdata:

$ bg-data genomicscores caddpack 1.0

Warning

CADD scores are originally from http://cadd.gs.washington.edu/ and are freely available for all non-commercial applications.
If you are planning on using them in a commercial application, please contact them at http://cadd.gs.washington.edu/contact.

Additonally, if you want to speed up the download of the genome reference that is also needed,
run this command:

$ bg-data datasets genomereference hg19

To run the example, we have included a bash script (run.sh)
than will execute OncodriveFML. The script should be executed in
the folder where the files have been extracted:

$./run.sh

The results will be saved in a folder named cds.

Documentation

Find OncodriveFML documentation in ReadTheDocs [http://oncodrivefml.readthedocs.io/en/latest/].

You can also compile the documentation yourself using Sphinx [http://www.sphinx-doc.org/en/stable/],
if you have cloned the repository.
To do so, install the optional packages in optional-requirements.txt and build the
documentation in the docs folder:

$ cd docs
$ make html

License

OncodriveFML is the property of the Universitat Pompeu Fabra (UPF), which hold the copyright thereto.
Copyright (C) 2016 Universitat Pompeu Fabra

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>

Notices/Contact

 UPF Unitat d’Innovació,
 Edifici Mercè Rodoreda,
 C/. Ramon Trias Fargas, 25-27,
 08005 Barcelona, Spain

Att.:

Telephone: +34 93 542 15 67
Email: innovacio@upf.edu

Configuration template specifications

[genome]
build = option('hg18', 'hg19', 'hg38', default='hg19')

[signature]
method = option('none', 'full', 'complement', 'bysample', 'file', default='full')

classifier = option('CANCER_TYPE', 'SAMPLE', 'SIGNATURE', default='CANCER_TYPE')
include_mnp = boolean(default=True)
normalize_by_sites = option('whole_genome', 'wgs', 'whole_exome', 'wxs', 'wes', default=None)
only_mapped_mutations = boolean(default=False)

path = string(default=None)
column_ref = string(default=None)
column_alt = string(default=None)
column_probability = string(default=None)

[score]
file = string
format = option('tabix', 'pack')
chr = integer
chr_prefix = string
pos = integer
ref = integer(default=None)
alt = integer(default=None)
score = integer
element = integer(default=None)
extra = integer(default=None)

minimum_number_of_stops = integer(default=3)
mean_to_stop_function = string(default=None)

[statistic]
method = option('amean', 'gmean', default='amean')
discard_mnp = boolean(default=False)

sampling = integer(default=100000)
sampling_max = integer(default=1000000)
sampling_chunk = integer(default=100)
sampling_min_obs = integer(default=10)

per_sample_analysis = option('amean', 'gmean', 'max', default=None)

 [[indels]]
 include = boolean(default=True)
 method = option('stop', 'max')
 max_consecutive = integer(default=0)
 simulate_with_signature = boolean(default=True)

 gene_exomic_frameshift_ratio = boolean(default=False)
 stops_function = option('mean', 'median', 'random', 'random_choice', default='mean')

[settings]
cores = integer(default=None)

[logging]
version = integer(default=1)

Configuration template

[genome]
Build of the reference genome
Currently supported: hg19, hg38 and hg18
build = 'hg19'

[signature]

Choose the method to calculate the trinuclotide singature:

"full" : Use a 192 matrix with all the possible signatures
method = 'full'

"complemented" : Use a 96 matrix with the signatures complemented
method = 'complement'

"none": Don't use signature
method = 'none'

"bysample": Compute a 96 matrix signature for each sample
method = 'bysample'

"file": Provide a file with the signature to use
The format is a tab separated file with header, and you have to set the columns to use.
method = 'file'
path = [path to the file that contains the signature]
column_ref = [column that contains the reference signature]
column_alt = [column that contains the alternate signature]
column_probability = [column that contaions the probability]

Choose the classifier (categorical value for the signature:
The classifier is a column in the dataset and must be one of these:
classifier = 'SIGNATURE'
classifier = 'SAMPLE'
classifier = 'CANCER_TYPE'
if the column is missing, all mutations contribute to the signature

Include/exclude MNP mutations in the signature computation
include_mnp = True
include_mnp = False

Choose if the signature must be computed using the whole cohort or
only the elements that fall into the regions you are analysing:
only_mapped_mutations = False
only_mapped_mutations = True

The frequency of trinucleotides can be normalized by the frequency of sites

whole_genome/wgs: correct the signature for the whole genome frequencies
normalize_by_sites = 'whole_genome'

whole_exome/wxs/wes: correct the signature for frequencies in coding regions
correct_signature_by_sites = 'whole_exome'

None: do not correct (comment the option)
normalize_by_sites = ''

[score]
Path to score file
file = "%(bgdata://genomicscores/caddpack/1.0)"
WARNING: The %(bgdata:...) will download (the first time that you use it) a score file from
our servers and install it into the ~/.bgdata folder.

WARNING: CADD 1.0 scores are original from http://cadd.gs.washington.edu/ and are freely
available for all non-commercial applications. If you are planning on using them in a
commercial application, please contact them at http://cadd.gs.washington.edu/contact.

Format of the file
'pack': binary format
format = 'pack'

Column that has the chromosome
chr = 0

If the chromosome has a prefix like 'chr'. Example: chrX chr1 ...
chr_prefix = ''

Column that has the position
pos = 1

Column that has the reference allele
ref = 2

Column that has the alternative allele
alt = 3

Column that has the score value
score = 5

If you have different scores at the same position, and each score applies to a
different region element, then uncomment this line and set the value to the column
that has the element id to match.
element = 6

Minimum number of stops per element to infer a for the stops using the mean of all scores
minimum_number_of_stops = 3

Function to infer the value of the stops in an element using the mean (x is the mean value of the scores)
mean_to_stop_function = '8.9168668946147314*np.exp(0.082688007694096191*x)'

[statistic]

Mathematical method to use to compare observed and simulated values
Arithmetic mean
method = 'amean'

Gemoetric mean
method = 'gmean'

Do not use/use MNP mutations in the analysis
discard_mnp = False
#dicard_mnp = True

Compute the observed values using only 1 mutation per sample
#per_sample_analysis = 'max'
#per_sample_analysis = 'amean'
#per_sample_analysis = 'gmean'

Minimum sampling
sampling = 100000

Maximum sampling
sampling_max = 1000000

Sampling chunk (in millions)
sampling_chunk = 100

Minimum number of observed (if not reached, keeps computing)
sampling_min_obs = 10

[[indels]]
Include/exclude indels from your analysis
include = True
include = False

Method used to simulate indels

Treat them as stops (for coding regions)
method = 'stop'

Treat them as a set of substitutions and take the maximum
method = 'max'

Number of consecutive times the indel appears to consider it falls in a repetitive region
Looking from the indel position and in the direction of the strand
max_consecutive = 7

Do not discard indels that fall in repetitive regions
max_consecutive = 0

Indels simulated as substitutio